Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Development ; 151(20)2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-38572965

RESUMO

Microtubule organising centres (MTOCs) are sites of localised microtubule nucleation in eukaryotic cells. Regulation of microtubule dynamics often involves KATANIN (KTN): a microtubule severing enzyme that cuts microtubules to generate new negative ends, leading to catastrophic depolymerisation. In Arabidopsis thaliana, KTN is required for the organisation of microtubules in the cell cortex, preprophase band, mitotic spindle and phragmoplast. However, as angiosperms lack MTOCs, the role of KTN in MTOC formation has yet to be studied in plants. Two unique MTOCs - the polar organisers - form on opposing sides of the preprophase nucleus in liverworts. Here, we show that KTN-mediated microtubule depolymerisation regulates the number and organisation of polar organisers formed in Marchantia polymorpha. Mpktn mutants that lacked KTN function had supernumerary disorganised polar organisers compared with wild type. This was in addition to defects in the microtubule organisation in the cell cortex, preprophase band, mitotic spindle and phragmoplast. These data are consistent with the hypothesis that KTN-mediated microtubule dynamics are required for the de novo formation of MTOCs, a previously unreported function in plants.


Assuntos
Katanina , Marchantia , Centro Organizador dos Microtúbulos , Microtúbulos , Katanina/metabolismo , Katanina/genética , Microtúbulos/metabolismo , Marchantia/metabolismo , Marchantia/genética , Centro Organizador dos Microtúbulos/metabolismo , Mutação/genética , Fuso Acromático/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Arabidopsis/metabolismo , Arabidopsis/genética
2.
J Cell Biol ; 223(4)2024 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-38329452

RESUMO

Microtubule-severing enzymes (MSEs), such as Katanin, Spastin, and Fidgetin play essential roles in cell division and neurogenesis. They damage the microtubule (MT) lattice, which can either destroy or amplify the MT cytoskeleton, depending on the cellular context. However, little is known about how they interact with their substrates. We have identified the microtubule-binding domains (MTBD) required for Katanin function in C. elegans. Katanin is a heterohexamer of dimers containing a catalytic subunit p60 and a regulatory subunit p80, both of which are essential for female meiotic spindle assembly. Here, we report that p80-like(MEI-2) dictates Katanin binding to MTs via two MTBDs composed of basic patches. Substituting these patches reduces Katanin binding to MTs, compromising its function in female meiotic-spindle assembly. Structural alignments of p80-like(MEI-2) with p80s from different species revealed that the MTBDs are evolutionarily conserved, even if the specific amino acids involved vary. Our findings highlight the critical importance of the regulatory subunit (p80) in providing MT binding to the Katanin complex.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Katanina , Microtúbulos , Animais , Feminino , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Katanina/genética , Katanina/metabolismo , Microtúbulos/genética , Microtúbulos/metabolismo , Ligação Proteica , Fuso Acromático , Meiose , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo
3.
J Neurosci ; 44(13)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38050126

RESUMO

Dynamic microtubules critically regulate synaptic functions, but the role of microtubule severing in these processes is barely understood. Katanin is a neuronally expressed microtubule-severing complex regulating microtubule number and length in cell division or neurogenesis; however, its potential role in synaptic functions has remained unknown. Studying mice from both sexes, we found that katanin is abundant in neuronal dendrites and can be detected at individual excitatory spine synapses. Overexpression of a dominant-negative ATPase-deficient katanin subunit to functionally inhibit severing alters the growth of microtubules in dendrites, specifically at premature but not mature neuronal stages without affecting spine density. Notably, interference with katanin function prevented structural spine remodeling following single synapse glutamate uncaging and significantly affected the potentiation of AMPA-receptor-mediated excitatory currents after chemical induction of long-term potentiation. Furthermore, katanin inhibition reduced the invasion of microtubules into fully developed spines. Our data demonstrate that katanin-mediated microtubule severing regulates structural and functional plasticity at synaptic sites.


Assuntos
Microtúbulos , Neurônios , Animais , Camundongos , Katanina/genética , Katanina/metabolismo , Microtúbulos/metabolismo , Neurônios/fisiologia , Neurogênese , Plasticidade Neuronal
4.
J Vis Exp ; (200)2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37929978

RESUMO

The microtubule network is an essential component of the nervous system. Mutations in many microtubules regulatory proteins are associated with neurodevelopmental disorders and neurological diseases, such as microtubule-associated protein Tau to neurodegenerative diseases, microtubule severing protein Spastin and Katanin 60 cause hereditary spastic paraplegia and neurodevelopmental abnormalities, respectively. Detection of microtubule networks in neurons is advantageous for elucidating the pathogenesis of neurological disorders. However, the small size of neurons and the dense arrangement of axonal microtubule bundles make visualizing the microtubule networks challenging. In this study, we describe a method for dissection of the larval neuromuscular junction and muscle cells, as well as immunostaining of α-tubulin and microtubule-associated protein Futsch to visualize microtubule networks in Drosophila melanogaster. The neuromuscular junction permits us to observe both pre-and post-synaptic microtubules, and the large size of muscle cells in Drosophila larva allows for clear visualization of the microtubule network. Here, by mutating and overexpressing Katanin 60 in Drosophila melanogaster, and then examining the microtubule networks in the neuromuscular junction and muscle cells, we accurately reveal the regulatory role of Katanin 60 in neurodevelopment. Therefore, combined with the powerful genetic tools of Drosophila melanogaster, this protocol greatly facilitates genetic screening and microtubule dynamics analysis for the role of microtubule network regulatory proteins in the nervous system.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Drosophila/metabolismo , Drosophila melanogaster/genética , Katanina/genética , Katanina/metabolismo , Larva/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Microtúbulos/metabolismo , Junção Neuromuscular/metabolismo , Células Musculares/metabolismo
5.
Development ; 150(22)2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37882691

RESUMO

Katanins, a class of microtubule-severing enzymes, are potent M-phase regulators in oocytes and somatic cells. How the complex and evolutionarily crucial, male mammalian meiotic spindle is sculpted remains unknown. Here, using multiple single and double gene knockout mice, we reveal that the canonical katanin A-subunit KATNA1 and its close paralogue KATNAL1 together execute multiple aspects of meiosis. We show KATNA1 and KATNAL1 collectively regulate the male meiotic spindle, cytokinesis and midbody abscission, in addition to diverse spermatid remodelling events, including Golgi organisation, and acrosome and manchette formation. We also define KATNAL1-specific roles in sperm flagellum development, manchette regulation and sperm-epithelial disengagement. Finally, using proteomic approaches, we define the KATNA1, KATNAL1 and KATNB1 mammalian testis interactome, which includes a network of cytoskeletal and vesicle trafficking proteins. Collectively, we reveal that the presence of multiple katanin A-subunit paralogs in mammalian spermatogenesis allows for 'customised cutting' via neofunctionalisation and protective buffering via gene redundancy.


Assuntos
Katanina , Microtúbulos , Proteômica , Animais , Masculino , Camundongos , Fertilidade/genética , Katanina/genética , Meiose/genética , Microtúbulos/metabolismo , Sêmen/metabolismo , Espermatogênese/genética
6.
Cytoskeleton (Hoboken) ; 80(11-12): 437-447, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37439368

RESUMO

Katanin is a microtubule severing protein belonging to the ATPase family and consists of two subunits; p60-katanin synthesized by the KATNA1 gene and p80-katanin synthesized by the KATNB1 gene. Microtubule severing is one of the mechanisms that allow the reorganization of microtubules depending on cellular needs. While this reorganization of microtubules is associated with mitosis in dividing cells, it primarily takes part in the formation of structures such as axons and dendrites in nondividing mature neurons. Therefore, it is extremely important in neuronal branching. p60 and p80 katanin subunits coexist in the cell. While p60-katanin is responsible for cutting microtubules with its ATPase function, p80-katanin is responsible for the regulation of p60-katanin and its localization in the centrosome. Although katanin has vital functions in the cell, there are no known posttranscriptional regulators of it. MicroRNAs (miRNAs) are a group of small noncoding ribonucleotides that have been found to have important roles in regulating gene expression posttranscriptionally. Despite being important in gene regulation, so far no microRNA has been experimentally associated with katanin regulation. In this study, the effects of miR-124-3p, which we detected as a result of bioinformatics analysis to have the potential to bind to the p60 katanin mRNA, were investigated. For this aim, in this study, SH-SY5Y neuroblastoma cells were transfected with pre-miR-124-3p mimics and pre-mir miRNA precursor as a negative control, and the effect of this transfection on p60-katanin expression was measured at both RNA and protein levels by quantitative real-time PCR (qRT-PCR) and western blotting, respectively. The results of this study showed for the first time that miR-124-3p, which was predicted to bind p60-katanin mRNA by bioinformatic analysis, may regulate the expression of the KATNA1 gene. The data obtained within the scope of this study will make important contributions in order to better understand the regulation of the expression of p60-katanin which as well will have an incontrovertible impact on the understanding of the importance of cytoskeletal reorganization in both mitotic and postmitotic cells.


Assuntos
MicroRNAs , Neuroblastoma , Humanos , Katanina/genética , Katanina/metabolismo , Neuroblastoma/metabolismo , Microtúbulos/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Mensageiro/metabolismo
7.
Plant Signal Behav ; 18(1): 2171360, 2023 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-36720201

RESUMO

Plant microtubules (MTs) form highly dynamic and distinct arrays throughout the cell cycle and are essential for cell and organ morphogenesis. A plethora of microtubule associated-proteins (MAPs), both conserved and plant-specific, ensure the dynamic response of MTs to internal and external cues. The MAP215 family MT polymerase/nucleation factor and the MT severing enzyme katanin are among the most conserved MAPs in eukaryotes. Recent studies have revealed unexpected functional and physical interactions between MICROTUBULE ORGANIZATION 1 (MOR1), the Arabidopsis homolog of MAP215, and KATANIN 1 (KTN1), the catalytic subunit of katanin. In this minireview, we provide a short overview on current understanding of the functions and regulations of MOR1 and katanin in cell morphogenesis and plant growth and development.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Katanina/genética , Katanina/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Plantas/metabolismo
8.
EMBO J ; 42(4): e111883, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36546550

RESUMO

Proper stamen filament elongation is essential for pollination and plant reproduction. Plant hormones are extensively involved in every stage of stamen development; however, the cellular mechanisms by which phytohormone signals couple with microtubule dynamics to control filament elongation remain unclear. Here, we screened a series of Arabidopsis thaliana mutants showing different microtubule defects and revealed that only those unable to sever microtubules, lue1 and ktn80.1234, displayed differential floral organ elongation with less elongated stamen filaments. Prompted by short stamen filaments and severe decrease in KTN1 and KTN80s expression in qui-2 lacking five BZR1-family transcription factors (BFTFs), we investigated the crosstalk between microtubule severing and brassinosteroid (BR) signaling. The BFTFs transcriptionally activate katanin-encoding genes, and the microtubule-severing frequency was severely reduced in qui-2. Taken together, our findings reveal how BRs can regulate cytoskeletal dynamics to coordinate the proper development of reproductive organs.


Assuntos
Brassinosteroides , Katanina , Microtúbulos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Brassinosteroides/metabolismo , Katanina/genética , Katanina/metabolismo , Microtúbulos/metabolismo , Reguladores de Crescimento de Plantas/metabolismo
9.
Dev Cell ; 57(21): 2497-2513.e6, 2022 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-36347241

RESUMO

Microtubules have spatiotemporally complex posttranslational modification patterns. How cells interpret this tubulin modification code is largely unknown. We show that C. elegans katanin, a microtubule severing AAA ATPase mutated in microcephaly and critical for cell division, axonal elongation, and cilia biogenesis, responds precisely, differentially, and combinatorially to three chemically distinct tubulin modifications-glycylation, glutamylation, and tyrosination-but is insensitive to acetylation. Glutamylation and glycylation are antagonistic rheostats with glycylation protecting microtubules from severing. Katanin exhibits graded and divergent responses to glutamylation on the α- and ß-tubulin tails, and these act combinatorially. The katanin hexamer central pore constrains the polyglutamate chain patterns on ß-tails recognized productively. Elements distal to the katanin AAA core sense α-tubulin tyrosination, and detyrosination downregulates severing. The multivalent microtubule recognition that enables katanin to read multiple tubulin modification inputs explains in vivo observations and illustrates how effectors can integrate tubulin code signals to produce diverse functional outcomes.


Assuntos
Caenorhabditis elegans , Tubulina (Proteína) , Animais , Katanina/genética , Tubulina (Proteína)/metabolismo , Caenorhabditis elegans/metabolismo , Microtúbulos/metabolismo , Processamento de Proteína Pós-Traducional
10.
Curr Biol ; 32(21): 4660-4674.e6, 2022 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-36174574

RESUMO

Microtubules are cytoskeletal polymers that separate chromosomes during mitosis and serve as rails for intracellular transport and organelle positioning. Manipulation of microtubules is widely used in cell and developmental biology, but tools for precise subcellular spatiotemporal control of microtubules are currently lacking. Here, we describe a light-activated system for localized recruitment of the microtubule-severing enzyme katanin. This system, named opto-katanin, uses targeted illumination with blue light to induce rapid, localized, and reversible microtubule depolymerization. This tool allows precise clearing of a subcellular region of microtubules while preserving the rest of the microtubule network, demonstrating that regulation of katanin recruitment to microtubules is sufficient to control its severing activity. The tool is not toxic in the absence of blue light and can be used to disassemble both dynamic and stable microtubules in primary neurons as well as in dividing cells. We show that opto-katanin can be used to locally block vesicle transport and to clarify the dependence of organelle morphology and dynamics on microtubules. Specifically, our data indicate that microtubules are not required for the maintenance of the Golgi stacks or the tubules of the endoplasmic reticulum but are needed for the formation of new membrane tubules. Finally, we demonstrate that this tool can be applied to study the contribution of microtubules to cell mechanics by showing that microtubule bundles can exert forces constricting the nucleus.


Assuntos
Adenosina Trifosfatases , Optogenética , Katanina/genética , Katanina/metabolismo , Adenosina Trifosfatases/metabolismo , Microtúbulos/metabolismo , Mitose
11.
Mediators Inflamm ; 2022: 8950130, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35979014

RESUMO

Background: Sepsis is a systemic inflammatory response that can elicit organ dysfunction as well as circulatory diseases in serious cases. When inflammatory responses are especially dysregulated, severe complications can arise, including sepsis-induced liver injury. Various microRNAs along with circular (circ) RNAs are involved in inflammatory responses; nevertheless, their functions in regulating sepsis-induced liver injury remain unknown. The cecal ligation and puncture (CLP) procedure can induce liver injury as well as polymicrobial sepsis. Methods: In this study, CLP was used to induce liver injury as well as polymicrobial sepsis. Then, liver function, inflammatory cytokine expression, and hepatic histopathology were evaluated. High-throughput sequencing was employed to investigate the abnormal hepatic circRNA expression after CLP. Raw264.7 cells were utilized to simulation an in vitro sepsis inflammation model with LPS induce. The relative mRNA as well as protein levels of TNF-α, IL-1ß, and IL-6 was explored by quantitative polymerase chain reaction (PCR) and enzyme-linked immunosorbent assays. We explored functional connections among circRNAs, miR-31-5p, and gasdermin D (GSDMD) using dual-luciferase reporter assays. Western blot was employed to test GSDMD, caspase-1, and NLRP3 expression in mice and cell models. Results: Our results showed that CLP-induced sepsis promoted liver injury via increasing inflammatory pyroptosis. The abnormal expression of circ-Katnal1 played an important role in CLP-induced sepsis. Downregulating circ-Katnal1 suppressed LPS-induced inflammatory pyroptosis in Raw264.7 cells. Bioinformatics and luciferase reporter results confirmed that miR-31-5p and GSDMD were downstream targets of circ-Katnal1. Inhibiting miR-31-5p or upregulating GSDMD reversed the protective effects of silencing circ-Katnal1. Conclusion: Taken together, circ-Katnal1 enhanced inflammatory pyroptosis in sepsis-induced liver injury through the miR-31-5p/GSDMD axis.


Assuntos
Doença Hepática Crônica Induzida por Substâncias e Drogas , Katanina/genética , MicroRNAs , Sepse , Animais , Apoptose , Katanina/metabolismo , Lipopolissacarídeos/farmacologia , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Piroptose , RNA Circular/genética , Sepse/patologia
12.
J Biol Chem ; 298(9): 102292, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35868557

RESUMO

Katanin p60 ATPase-containing subunit A1 (KATNA1) is a microtubule-cleaving enzyme that regulates the development of neural protrusions through cytoskeletal rearrangements. However, the mechanism underlying the linkage of the small ubiquitin-like modifier (SUMO) protein to KATNA1 and how this modification regulates the development of neural protrusions is unclear. Here we discovered, using mass spectrometry analysis, that SUMO-conjugating enzyme UBC9, an enzyme necessary for the SUMOylation process, was present in the KATNA1 interactome. Moreover, GST-pull down and co-immunoprecipitation assays confirmed that KATNA1 and SUMO interact. We further demonstrated using immunofluorescence experiments that KATNA1 and the SUMO2 isoform colocalized in hippocampal neurites. We also performed a bioinformatics analysis of KATNA1 protein sequences to identify three potentially conserved SUMOylation sites (K77, K157, and K330) among vertebrates. Mutation of K330, but not K77 or K157, abolished KATNA1-induced microtubule severing and decreased the level of binding observed for KATNA1 and SUMO2. Cotransfection of SUMO2 and wildtype KATNA1 in COS7 cells increased microtubule severing, whereas no effect was observed after cotransfection with the K330R KATNA1 mutant. Furthermore, in cultured hippocampal neurons, overexpression of wildtype KATNA1 significantly promoted neurite outgrowth, whereas the K330R mutant eliminated this effect. Taken together, our results demonstrate that the K330 site in KATNA1 is modified by SUMOylation and SUMOylation of KATNA1 promotes microtubule dynamics and hippocampal neurite outgrowth.


Assuntos
Katanina , Microtúbulos , Crescimento Neuronal , Sumoilação , Adenosina Trifosfatases/metabolismo , Animais , Células COS , Chlorocebus aethiops , Células HEK293 , Humanos , Katanina/genética , Katanina/metabolismo , Microtúbulos/enzimologia , Microtúbulos/genética , Ubiquitina/metabolismo , Enzimas de Conjugação de Ubiquitina/genética , Enzimas de Conjugação de Ubiquitina/metabolismo
13.
Andrology ; 10(7): 1339-1350, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35752927

RESUMO

BACKGROUND: Previous studies in animal models evidenced that genetic mutations of KATNAL1, resulting in dysfunction of its encoded protein, lead to male infertility through disruption of microtubule remodelling and premature germ cell exfoliation. Subsequent studies in humans also suggested a possible role of KATNAL1 single-nucleotide polymorphisms in the development of male infertility as a consequence of severe spermatogenic failure. OBJECTIVES: The main objective of the present study is to evaluate the effect of the common genetic variation of KATNAL1 in a large and phenotypically well-characterised cohort of infertile men because of severe spermatogenic failure. MATERIALS AND METHODS: A total of 715 infertile men because of severe spermatogenic failure, including 210 severe oligospermia and 505 non-obstructive azoospermia patients, as well as 1058 unaffected controls were genotyped for three KATNAL1 single-nucleotide polymorphism taggers (rs2077011, rs7338931 and rs2149971). Case-control association analyses by logistic regression assuming different models and in silico functional characterisation of risk variants were conducted. RESULTS: Genetic associations were observed between the three analysed taggers and different severe spermatogenic failure groups. However, in all cases, the haplotype model (rs2077011*C | rs7338931*T | rs2149971*A) better explained the observed associations than the three risk alleles independently. This haplotype was associated with non-obstructive azoospermia (adjusted p = 4.96E-02, odds ratio = 2.97), Sertoli-cell only syndrome (adjusted p = 2.83E-02, odds ratio = 5.16) and testicular sperm extraction unsuccessful outcomes (adjusted p = 8.99E-04, odds ratio = 6.13). The in silico analyses indicated that the effect on severe spermatogenic failure predisposition could be because of an alteration of the KATNAL1 splicing pattern. CONCLUSIONS: Specific allelic combinations of KATNAL1 genetic polymorphisms may confer a risk of developing severe male infertility phenotypes by favouring the overrepresentation of a short non-functional transcript isoform in the testis.


Assuntos
Azoospermia , Infertilidade Masculina , Katanina , Oligospermia , Animais , Humanos , Masculino , Azoospermia/genética , Infertilidade Masculina/genética , Katanina/genética , Oligospermia/genética , Fenótipo , Polimorfismo de Nucleotídeo Único , Isoformas de Proteínas/genética , Sêmen , Espermatogênese/genética
14.
Bioengineered ; 13(5): 13055-13069, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35635053

RESUMO

Oral squamous cell carcinoma (OSCC) is a common cancer with high recurrence, metastasis rates and poor prognosis. Circular RNAs (circRNAs) take part in regulating OSCC. Herein, we examined the role of circ_0008068 in OSCC. The circ_0008068, Katanin p60 ATPase-containing subunit A-like 1 (KATNAL1) mRNA, microRNA-153-3p (miR-153-3p) and acylgycerol kinase (AGK) contents were indicated by quantitative real-time polymerase chain reaction (qRT-PCR) and western blot. Moreover, in vitro and in vivo assays were conducted to scrutinize the effects of circ_0008068 on OSCC. Additionally, the contact between miR-153-3p and circ_0008068 or AGK was assessed by dual-luciferase reporter assay and RNA immunoprecipitation (RIP) assay. Thereafter, we found that the appearance of circ_0008068 and AGK was increased, and miR-153-3p content was diminished in OSCC. Circ_0008068 lack subdued cell proliferation, migration, invasion, tube formation and glycolysis metabolism, but stimulated cell apoptosis in OSCC. In addition, circ_0008068 bound to miR-153-3p to modulate the expression of its target AGK. Besides, miR-153-3p was validated to act as a tumor suppressor in OSCC tumorigenesis by suppressing AGK. Additionally, circ_0008068 knockdown also attenuated tumor growth in nude mice. In all, circ_0008068 expedited the growth of OSCC by miR-153-3p/AGK axis.Abbreviations: OSCC: Oral squamous cell carcinoma; AGK: Acylgycerol kinase; CircRNA: Circular RNA; KATNAL1: Katanin p60 ATPase-containing subunit A-like 1; qRT-PCR: Quantitative real-time polymerase chain reaction; miRNAs/miRs: MicroRNAs; RIP: RNA immunoprecipitation; 3'UTR3': -untranslated region; HK2: Hexokinase 2; LDHA Lactate dehydrogenase A; IHC: Immunohistochemistry; CCK8: Cell counting kit-8; GAPDH: Glyceraldehyde-3-phosphate dehydrogenase.


Assuntos
MicroRNAs , Neoplasias Bucais , RNA Circular , Carcinoma de Células Escamosas de Cabeça e Pescoço , Animais , Movimento Celular , Regulação Neoplásica da Expressão Gênica , Humanos , Katanina/genética , Camundongos , Camundongos Nus , MicroRNAs/genética , Neoplasias Bucais/genética , Neoplasias Bucais/patologia , Fosfotransferases (Aceptor do Grupo Álcool)/genética , RNA Circular/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia
15.
Plant Cell ; 34(8): 3006-3027, 2022 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-35579372

RESUMO

The MAP215 family of microtubule (MT) polymerase/nucleation factors and the MT severing enzyme katanin are widely conserved MT-associated proteins (MAPs) across the plant and animal kingdoms. However, how these two essential MAPs coordinate to regulate plant MT dynamics and development remains unknown. Here, we identified novel hypomorphic alleles of MICROTUBULE ORGANIZATION 1 (MOR1), encoding the Arabidopsis thaliana homolog of MAP215, in genetic screens for mutants oversensitive to the MT-destabilizing drug propyzamide. Live imaging in planta revealed that MOR1-green fluorescent protein predominantly tracks the plus-ends of cortical MTs (cMTs) in interphase cells and labels preprophase band, spindle and phragmoplast MT arrays in dividing cells. Remarkably, MOR1 and KATANIN 1 (KTN1), the p60 subunit of Arabidopsis katanin, act synergistically to control the proper formation of plant-specific MT arrays, and consequently, cell division and anisotropic cell expansion. Moreover, MOR1 physically interacts with KTN1 and promotes KTN1-mediated severing of cMTs. Our work establishes the Arabidopsis MOR1-KTN1 interaction as a central functional node dictating MT dynamics and plant growth and development.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Animais , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Divisão Celular , Katanina/genética , Katanina/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo
16.
J Integr Plant Biol ; 64(8): 1514-1530, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35587570

RESUMO

The organization of the microtubule cytoskeleton is critical for cell and organ morphogenesis. The evolutionarily conserved microtubule-severing enzyme KATANIN plays critical roles in microtubule organization in the plant and animal kingdoms. We previously used conical cell of Arabidopsis thaliana petals as a model system to investigate cortical microtubule organization and cell morphogenesis and determined that KATANIN promotes the formation of circumferential cortical microtubule arrays in conical cells. Here, we demonstrate that the conserved protein phosphatase PP2A interacts with and dephosphorylates KATANIN to promote the formation of circumferential cortical microtubule arrays in conical cells. KATANIN undergoes cycles of phosphorylation and dephosphorylation. Using co-immunoprecipitation coupled with mass spectrometry, we identified PP2A subunits as KATANIN-interacting proteins. Further biochemical studies showed that PP2A interacts with and dephosphorylates KATANIN to stabilize its cellular abundance. Similar to the katanin mutant, mutants for genes encoding PP2A subunits showed disordered cortical microtubule arrays and defective conical cell shape. Taken together, these findings identify PP2A as a regulator of conical cell shape and suggest that PP2A mediates KATANIN phospho-regulation during plant cell morphogenesis.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Animais , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Katanina/genética , Katanina/metabolismo , Microtúbulos/metabolismo , Morfogênese , Plantas/metabolismo
17.
Dev Cell ; 57(8): 995-1008.e5, 2022 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-35429434

RESUMO

Mobile microRNAs (miRNAs) serve as local and long-distance signals in the developmental patterning and stress responses in plants. However, mechanisms governing the non-cell autonomous activities of miRNAs remain elusive. Here, we show that mutations that disrupt microtubule dynamics are specifically defective for the non-cell autonomous actions of mobile miRNAs, including miR165/6 that is produced in the endodermis and moves to the vasculature to pattern xylem cell fates in Arabidopsis roots. We show that KTN1, a subunit of a microtubule-severing enzyme, is required in source cells to inhibit the loading of miR165/6 into ARGONUATE1 (AGO1), which is cell autonomous, to enable the miRNA to exit the cell. Microtubule disruption enhances the association of miR165/6 with AGO1 in the cytoplasm. These findings suggest that although cell-autonomous miRNAs load onto AGO1 in the nucleus, the cytoplasmic AGO1 loading of mobile miRNAs is a key step regulated by microtubules to promote the range of miRNA cell-to-cell movement.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , MicroRNAs , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Regulação da Expressão Gênica de Plantas , Katanina/genética , MicroRNAs/genética , Microtúbulos/metabolismo , Plantas Geneticamente Modificadas/metabolismo
18.
Int J Mol Sci ; 23(7)2022 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-35409205

RESUMO

Root hydrotropism refers to root directional growth toward soil moisture. Cortical microtubule arrays are essential for determining the growth axis of the elongating cells in plants. However, the role of microtubule reorganization in root hydrotropism remains elusive. Here, we demonstrate that the well-ordered microtubule arrays and the microtubule-severing protein KATANIN (KTN) play important roles in regulating root hydrotropism in Arabidopsis. We found that the root hydrotropic bending of the ktn1 mutant was severely attenuated but not root gravitropism. After hydrostimulation, cortical microtubule arrays in cells of the elongation zone of wild-type (WT) Col-0 roots were reoriented from transverse into an oblique array along the axis of cell elongation, whereas the microtubule arrays in the ktn1 mutant remained in disorder. Moreover, we revealed that abscisic acid (ABA) signaling enhanced the root hydrotropism of WT and partially rescued the oryzalin (a microtubule destabilizer) alterative root hydrotropism of WT but not ktn1 mutants. These results suggest that katanin-dependent microtubule ordering is required for root hydrotropism, which might work downstream of ABA signaling pathways for plant roots to search for water.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Katanina/genética , Katanina/metabolismo , Microtúbulos/metabolismo , Raízes de Plantas/metabolismo , Tropismo/fisiologia , Água/metabolismo
19.
Genetics ; 221(1)2022 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-35298637

RESUMO

Microtubule severing plays important role in cell structure and cell division. The microtubule severing protein katanin, composed of the MEI-1/MEI-2 subunits in Caenorhabditis elegans, is required for oocyte meiotic spindle formation; however, it must be inactivated for mitosis to proceed as continued katanin expression is lethal. Katanin activity is regulated by 2 ubiquitin-based protein degradation pathways. Another ubiquitin ligase, HECD-1, the homolog of human HECTD1/HECT domain E3 ubiquitin protein ligase 1, regulates katanin activity without affecting katanin levels. In other organisms, HECD-1 is a component of the striatin-interacting kinase phosphatase complex, which affects cell proliferation and a variety of signaling pathways. Here we conducted a systematic screen of how mutations in striatin-interacting kinase phosphatase components affect katanin function in C. elegans. Striatin-interacting kinase phosphatase core components (FARL-11, CASH-1, LET-92, and GCK-1) were katanin inhibitors in mitosis and activators in meiosis, much like HECD-1. By contrast, variable components (SLMP-1, OTUB-2) functioned as activators of katanin activity in mitosis, indicating they may function to alter striatin-interacting kinase phosphatase core function. The core component CCM-3 acted as an inhibitor at both divisions, while other components (MOB-4, C49H3.6) showed weak interactions with katanin mutants. Additional experiments indicate that katanin may be involved with the centralspindlin complex and a tubulin chaperone. HECD-1 shows ubiquitous expression in the cytoplasm throughout meiosis and early development. The differing functions of the different subunits could contribute to the diverse functions of the striatin-interacting kinase phosphatase complex in C. elegans and other organisms.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Adenosina Trifosfatases/genética , Animais , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Katanina/genética , Katanina/metabolismo , Meiose/genética , Microtúbulos/genética , Microtúbulos/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Ubiquitinas/genética , Ubiquitinas/metabolismo
20.
Biosci Rep ; 42(1)2022 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-34981809

RESUMO

Alzheimer's disease (AD) is a form of neurodegenerative disease in the elderly with no cure at present. In a previous study, we found that the scaffold protein, disrupted in Schizophrenia 1 (DISC1) is down-regulated in the AD brains, and ectopic expression of DISC1 can delay the progression of AD by protecting synaptic plasticity and down-regulating BACE1. However, the underlying mechanisms remain not to be elucidated. In the present study, we compared the proteomes of normal and DISC1high AD cells expressing the amyloid precursor protein (APP) using isobaric tag for relative and absolute quantitation (iTRAQ) and mass spectrometry (MS). The differentially expressed proteins (DEPs) were identified, and the protein-protein interaction (PPI) network was constructed to identify the interacting partners of DISC1. Based on the interaction scores, NDE1, GRM3, PTGER3 and KATNA1 were identified as functionally or physically related to DISC1, and may therefore regulate AD development. The DEPs were functionally annotated by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases with the DAVID software, and the Non-supervised Orthologous Groups (eggNOG) database was used to determine their evolutionary relationships. The DEPs were significantly enriched in microtubules and mitochondria-related pathways. Gene set enrichment analysis (GSEA) was performed to identify genes and pathways that are activated when DISC1 is overexpressed. Our findings provide novel insights into the regulatory mechanisms underlying DISC1 function in AD.


Assuntos
Doença de Alzheimer/metabolismo , Encéfalo/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteoma , Proteômica , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Encéfalo/patologia , Predisposição Genética para Doença , Células HEK293 , Humanos , Katanina/genética , Katanina/metabolismo , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas do Tecido Nervoso/genética , Fenótipo , Mapas de Interação de Proteínas , Receptores de Glutamato Metabotrópico/genética , Receptores de Glutamato Metabotrópico/metabolismo , Receptores de Prostaglandina E Subtipo EP3/genética , Receptores de Prostaglandina E Subtipo EP3/metabolismo , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas em Tandem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA